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Abstract

A condensed history and theoretical development of lattice-gas au-
tomata in the Boltzmann limit is presented. This is provided as back-
ground to set up the context for understanding the implementation of
the lattice-gas method on two parallel supercomputers: the MIT cellu-
lar automata machine CAM-8 and the Connection Machine CM-5. The
macroscopic limit of two-dimensional fluids is tested by simulating the
Rayleigh-Bénard convective instability, Kelvin-Helmholtz shear instabil-
ity, and the Von Karman vortex shedding instability. Performance of the
two machines in terms of both site update rate and maximum problem
size are comparable. The CAM-8, being a low-cost desktop machine,
demonstrates the potential of special-purpose digital hardware.
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1 Introduction

Lattice-gas automata dynamics is a discrete form of molecular dynamics. In

molecular dynamics one simulates a many-body system of particles with con-

tinuous interaction potentials [1]. The particles have continuous positions and

momenta. In lattice-gas dynamics the particles’ positions and momenta are

discrete and motion is constrained to a spacetime crystallographic lattice.

One may also view lattice-gas automata dynamics as an extension of cellular

automata, popularized in the physics community by Stephen Wolfram [2, 3]. An

elementary treatment of the cellular automata subject is presented by Tommaso

Toffoli and Norman Margolus in their book on cellular automata machines [4].

Corresponding to the cellular automata paradigm, lattice-gas automata are ide-

ally suited for massively parallel processing. In lattice-gas automata models,

each possible momentum state at a given position is represented by a single

digital bit. Therefore, a Pauli exclusion principle is enforced where there can

be no more than a single particle per momentum state. As a particle in state

α at some lattice site of the crystallographic space “hops” into state β, say at

a neighboring site, a digital bit is moved from α and into β. So in lattice-gas

dynamics one simulates a system of Boolean particles where the data streaming

corresponds to spatial translation and the data permutation corresponds to col-

lisional interactions. This computational analog of particle dynamics offers an

exciting alternative to, and not simply an approximation of, the usual partial

differential equations[5]. So the lattice-gas methodology has an intrinsic value

beyond finite difference schemes.

The lattice gas approach has been extended to a lattice-based Krook-Bhatnager-

Gross approximation of the Boltzmann equation [6, 7, 8, 9], which we call the

lattice-Boltzmann equation. In place of the exactly computable dynamics of

Boolean particles, one focuses on a statistical regime where a particle has a

probability of occupying a given momentum state. Moreover, many particles

can occupy the same momentum state at the same position. The approach of-

fers both theoretical and computational advantages. An important theoretical
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advantage is that one may capture the essential physics of the complex system by

stating no more than the system’s equilibrium distribution. Computationally it

has the advantage of reducing noisy fluctuations in the system at the expense of

discarding information concerning particle-particle correlations. Lattice-gas au-

tomata in the Boltzmann approximation have become one of the most important

contributions by the lattice-gas community to high-performance computational

physics [10]. The lattice-Boltzmann equation, usually implemented within one

hundred lines of code on a massively parallel processor 1, allows the researcher

to efficiently model complex systems, providing a straightforward particle-based

metaphor to computation. Yet it relies on expensive floating point calculations

and therefore is most suited for massively parallel machines such as the Connec-

tion Machine-5 (CM-5). In this paper, we use the lattice-Boltzmann equation

only for theoretical analysis—all of our simulations are based on lattice gases.

We have implemented a general lattice-gas automaton on two parallel archi-

tectures: the experimental MIT CAM-8 and the Thinking Machines Corporation

CM-5. Very briefly, a CAM-8 node has 222 16-bit sites (8 Mbytes DRAM) and

a double buffered look-up table (2 Mbits SRAM), with a clock speed of 25 MHz.

There are no processors, only lookup tables. The nodes are connected in a 3D

mesh. A CM-5 node has 32 Mbytes of DRAM, four vector units at 16 MHz, and

a SPARC processor at 32 MHz. A fat-tree network connects the nodes. The

architectures of both machines will be discussed in more detail below.

The presentation here is limited to two-dimensional fluids. Three-dimensional

hydrodynamics, immiscible fluids [11, 12, 13, 14], multiphase systems [15, 16, 17,

18], reaction-diffusion systems, magnetohydrodynamics [19], and flow through

porous media [20, 21] are also subjects of active research. We have implemented

hydrodynamic and thermohydrodynamic lattice-gases on the CAM-8, the first

lattice-gas experiment conducted on the prototype machine. Results of the

CAM-8 and CM-5 simulations of the Rayleigh-Bénard convection instability,

Kelvin-Helmholtz shear instability, and Von-Karman vortex shedding instabil-

ity are presented.

Our main findings are the following. The CAM-8 delivers 25 million site
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updates per second per module for a 16 bit lattice gas. The CM-5 in principle

can simulate larger lattices due to its much larger memory size (16Gbytes on a

512-node partition). In practice the typical problem sizes were almost identi-

cal on a 128-node partition of the CM-5 and on an 8-module CAM-8 prototype:

4096×2048 2D lattices on both machines. The CM-5 can deliver about 1 million

site updates per second per node for a 16 bit lattice gas. For the CM-5 inter-

processor communication cost is small relative to the computation involved in

the data streaming and site update when the size of the lattice is large enough.

This suggests that the relatively low communication bandwidth imposes no se-

rious degradation on the delivered performance. We also find that the delivered

performance increases as the lattice size increases, see appendix 9.

The best way to report performance of each machine for lattice-gas simula-

tion is to give the site update rate. The best rate achieved on the thermohy-

drodynamic lattice-gas was 191 million site updates per second on an 8-module

CAM-8 and 110 million on on a 256-node partition of the CM-5. For a simpler

problem, the FHP lattice-gas, a 256-node partition of the CM-5 attained a site

update rate of 550 million updates per second on a 32K by 2K lattice. The best

rate obtainable on the 8-module CAM-8 for the same simple problem is 382 mil-

lion site updates per second. The CAM-8 prototype is a desktop machine (see

figure 3) containing approximately the same amount of digital logic and mem-

ory as is found in a common workstation. The efficiency of the CAM-8 comes

at a severe price, in terms of its specialization to a certain class of scientific

computations, albeit its applicability is widening [22].

2 Some Historical Notes

Let us briefly review some of the historical developments of the lattice-gas sub-

ject. An overview of the lattice-gas subject has also been given by Boghosian

[23]. Simple implementations of a discrete molecular dynamics on a square

lattice were investigated in the early 1970’s by the French, in particular Yves

Pomeau and coworkers [24]. By the late 1970’s, cellular automata research was
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underway at the Information Mechanics Group at MIT on reversible computa-

tion by Edward Fredkin, Tommaso Toffoli, and Norman Margolus[25, 26, 27].

The idea of building special-purpose machines to simulate physics-like models on

a fine-grained space [28, 27] originated there and today still remains a strength

of that group. A good review of the kind of cellular automata modeling done

in the early 1980’s is given by Gérard Vichniac [29]. During this time, Stephen

Wolfram visited the Information Mechanics Group and was stimulated by their

work. In 1983 Wolfram popularized cellular automata as a simple mathematical

model to investigate self-organization in statistical mechanics[2, 30].

After visiting the MIT Information Mechanics Group in 1983 and seeing

a TM-gas simulation on the CAM-5 machine of Toffoli and Margolus[5, 28],

Pomeau realized the potential for simulating large fluid systems and much new

interest and activity in the field emerged. A race began to theoretically prove

that a hydrodynamic limit emerges from simple lattice-gas automata. The in-

tense interest was not stirred as much by the subject of hydrodynamics itself,

but instead by the possibility of a simple cellular space-time model capturing

such complex natural behavior in an exact way. In 1985 Wolfram completed the

first hydrodynamics simulations on a triangular lattice [31] on the Connection

Machine—at this time, lattice-gases were one of the most important applications

for the bit oriented single instruction multiple data Connection Machine. By

1986 Frisch, Hasslacher, and Pomeau had reported the existence of an isotropic

two-dimensional lattice-gas on the triangular lattice [32]. In the same year Wol-

fram completed the most detailed treatment of the basic theory including novel

symmetry considerations and introduced the Boltzmann approximation. Frisch

et al. found the minimal lattice symmetry needed to recover isotropic flow in

the continuum limit is a triangular lattice with a particle possessing six mo-

mentum states. Their model is now referred to as the FHP-model or hexagonal

lattice-gas model. Accompanying the seminal 1986 FHP paper was a paper by

Margolus, Toffoli, and Vichniac on cellular-automata supercomputers for fluid-

dynamics modeling [33]. The contribution of Margolus et al. complements the

theoretical work of Frisch et al., pointing out that with dedicated computa-
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tional hardware the lattice-gas model potentially gains a unique advantage over

traditional methods of physical modeling.

By 1987 the lattice-gas methodology was extended to model three-dimensional

flows. The minimal lattice found by Frisch et el. [34] was the face centered hy-

percubic (fchc) lattice. The fchc lattice with 24-nearest neighbors is projected

onto three dimensions in a simple fashion by limiting the depth of the fourth

dimension of the simulation volume to one lattice link. Research is still un-

derway on finding optimal collisions to minimize the viscosity of the fluid [35],

however this task has proven very difficult. The reason for this difficulty is that

the fchc lattice-gas has 224 or 16.7 million input configurations. In practice, all

possible collisions are not included in a simulation because of the large demand

for local memory needed to pre-store all the necessary collisional events in table

look-up format—an efficient format for implementing complex interactions. To

ease memory loads, lattice isometries are exploited to reduce the size of look-up

tables [36].

The hope of modeling very high Reynolds number flows by lattice-gas au-

tomata methods has not yet been realized with models that do not violate

semi-detailed balance. However, lattice-gas models in the Boltzmann approxi-

mation have shown considerably more success in achieving high Reynolds num-

ber flows2.

Recently the first prototype of the next generation cellular automata ma-

chine, CAM-8, has been constructed [37]. The current 8-module CAM-8 proto-

type, with a site density of 222 16-bit sites per module, has a total of 32 million

sites. Within the next few years a large CAM-8 sponsored by the US Air Force

will be constructed with at least 109 sites and will have a computational rate

of approximately 12.5 billion site updates per second. This site update rate is

about two orders of magnitude faster than that achievable with current paral-

lel computers such as the Connection Machine, CM-5. In §7 we present some

simulation results on the CAM-8 prototype and the CM-5.
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3 Why lattice-gases?

There are many reasons for studying lattice-gases, both practical and theoreti-

cal. Some commonly cited reasons are oriented towards computer science and

issues related to massively parallel processing. There are also appealing reasons

related to modeling physical systems with complex boundary conditions. The

lattice-gas’ attributes include: 1) bit efficiency; 2) inherent simplicity; 3)logic

density; and 4) exact computability.

Firstly, lattice-gas automata allow for high bit efficiency. A single digital

bit is used to represent a particle. Unlike in floating point calculations where

there exist uncontrolled round-off errors in the least significant bits, in lattice-

gases all bits have equal weight, or to quote Frisch, there is “bit democracy.”

Consequently, the efficiency with which bits are used may be higher for lattice-

gases.

Secondly, lattice-gas automata possess an inherent simplicity. Just as simple

models in statistical mechanics, such as the Ising model, shed light on equilib-

rium critical phenomena, so too do lattice-gas models shed light on dynami-

cal phenomena[18]. Moreover, their inherent simplicity gives them pedagogical

value since many properties of macroscopic systems can be understood through

analytical expressions given very simple local rules. For example, lattice-gases

are a simple way to understand details of fluid systems such as the dependence

of the shear viscosity on particle collision rates. Computational fluid dynam-

ics codes are complicated and intricate in their approximations. Lattice-gases

are perhaps the simplest expression of Navier-Stokes flows and are easily imple-

mented.

Thirdly, the combination of bit efficiency with the simplicity and locality

of some lattice-gas rules allows—in principle—nearly ideal logic density. At

the highest logic density that is physically possible, there is the interesting

prospect of lattice-gas architectures built out of “quantum hardware.” There is

the expectation that in the future, computation will be achieved on quantum

computers [38, 39, 40, 41]. As the fundamental computational element’s size
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reduces to nano-scale ranges its behavior is governed by quantum mechanics.

Quantum mechanics requires unitary, and hence invertible, time evolution—the

microscopic reversibility of the lattice-gas dynamics is important here. Even

before quantum mechanics becomes a constraint, the reversibility of lattice gas

dynamics may become a significant benefit, since at very high logic densities the

dissipation of heat caused by irreversible computations will become an issue[42,

43].

Fourthly, lattice-gas automata are exactly computable. Richard Feynman

[44] considered on a discrete spacetime lattice “the possibility that there is to be

an exact simulation, that the computer will do exactly the same as nature”, and

that using computers in an exactly computable way may lead to new possibilities

in our understanding of physics. Although lattice-gases cannot model quantum

systems [44], they do model classical systems while keeping mass, momentum,

and energy exactly conserved. Exact modeling is valuable, for example, in cases

where multiparticle correlations are essential to the system’s behavior. Lattice-

gas simulations can verify theoretical predictions beyond the Boltzmann mean-

field approximation of uncorrelated collisions: the phenomenon of long-time tails

in the velocity autocorrelation function [45, 46, 47] has recently been observed

in lattice gases [48, 49, 50].

4 Lattice-Gas Automata

We first define, in the usual way, what a lattice-gas cellular automaton is. Then

we analytically treat the lattice-gas in the Boltzmann limit to show that one

may use strictly deterministic local rules to obtain the correct macroscopic limit.

We show in particular that a chiral system is adequate to obtain correct hydro-

dynamics. We then summarize the derivation of the equations of motion for a

thermal lattice-gas. Finally, we discuss our conventions for embedding a hexag-

onal lattice in a square lattice. We show the streaming relations used here for

local and nonlocal collisions.
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4.1 Some Preliminaries about the Local Dyanamics

Variables used are the following

Mass Unit : m

Spatial Unit : l

T emporal Unit : τ

Particle Speed : c =
l

τ
Sound Speed : cs

# Momentum Directions : B

Lattice V ectors : êa

a = 1, 2, . . . , B

Particle Number V ariable : na

Distribution Function : fa

Collision Operator : Ωa

Jacobian Matrix : Jab

Number Density : n

Mass Density : ρ = mn

Bulk V elocity : v

Total Internal Energy : ε

Consider a spacetime lattice with N spatial sites, unit cell size l, and time

unit τ . Particles, with mass m, propagate on the lattice with speed c = l/τ .

The lattice vectors are denoted by êa where a = 1, 2, . . . , B. A particle’s state

is completely specified at some time, t, by specifying its position on the lattice,

x, and its momentum, p = mcêa. The particles obey Pauli exclusion since only

one particle can occupy a single momentum state at a time. The total number of

configurations per site is 2B . The total number of single particle states available

in the system is Ntotal = BN . With P particles in the system, we denote the

filling fraction by d = P/Ntotal.

The number variable, denoted by na(x, t), has the value one if a particle

exists at site x at time t in momentum state mcêa and zero otherwise. The

evolution of the lattice-gas can be written in terms of na as a two-part collision

and streaming process. The collision part permutes the particles locally at each

site

n′
a(x, t) = na(x, t) + Ωa(~n(x, t)), (1)
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where Ωa represents the collision operator and in general depends on all the

particles at the site. The streaming part permutes the particles globally. A

particle at position x “hops” to its neighboring site at x + lêa and then time is

incremented by τ

n′
a(x + lêa, t + τ) = na(x, t) + Ωa(~n(x, t)). (2)

Equation (2) is the lattice-gas cellular automaton equation of motion. Because

the dynamics only permutes the occupation of states, the system is strictly

reversible, see figure 1.

4.2 Coarse-Grained Dynamics

To simplify the theoretical analysis of the lattice-gas dynamics, it is convenient

to work in the Boltzmann limit where a field point is obtained by a block average

over the number variables. That is, we may define a single particle distribution

function, fa = 〈na〉.It should be understood that whenever the single particle

distribution function is written, its subscripted index is taken modulo B

fa+b = f mod B(a+b). (3)

Using the Boltzmann molecular chaos assumption the averaged collision opera-

tor simplifies to 〈Ωa〉 = Ωa(〈~n〉), and by a Taylor expansion (2) we obtain the

lattice Boltzmann equation

∂tfa + ceai∂ifa = Ωa. (4)

A careful treatment of this procedure is given by Frisch et al. [34]. A general

collision operator is constructed as follows

Ωa =
∑
{ζi}

αQa({ζi}), (5)

where {ζi} is a set of occupied particle states and α = ±1 is a scalar coefficient

and where each term in the sum is written in factorized form as

Qa(i1, . . . , ik) =
fa+i1

1 − fa+i1

· · · fa+ik

1 − fa+ik

B∏
j=1

(1 − fa+j). (6)
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We expand the distribution function about its equilibrium value, f eq

fa = f eq + δfa (7)

so that, to first order, we have

Ωa(f eq) =
∑

b

∂Ωa

∂fb
δfb. (8)

The l.h.s. of (8) must vanish, since the particle distribution is non-changing

under equilibrium conditions. The eigenvalues of the Jacobian of the collision

operator,

Jab =
∂Ωa

∂fb
, (9)

can be calculated and the number of these that vanish must equal the number

of invariant quantities in the lattice-gas dynamics. Because of the finite-point

group symmetry of the spatial lattice, the Jacobian matrix will be circulant, its

elements can be specified by the difference of their indices, Jab = Ja−b. This

property of the Jacobian simplifies the solution of the eigenvalue equation

∑
b

Ja−bξ
k
b = λkξk

a , (10)

where k = 1, . . . , B. Let us make the ansatz that the eigenvectors have the

following form

ξk
a = e2πiak/B . (11)

Then inserting (11) into (10) and taking m = a − b, gives

λk =
∑
m

Jme2πimk/B . (12)

4.3 Triangular Lattice: B=6

When implementing a lattice-gas on a parallel computer it is most convenient

to use deterministic updating rules. This is important for several reasons. First

of all, using deterministic rules, the lattice-gas possesses a strict time-reversal

invariance. Therefore, it mimics the time-reversal invariance of natural physical

laws. As a practical matter, the reversibility allows one to run the gas dynamics
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forward to some state and then back to its initial state. This is a good way

to check if the local rules are coded correctly. Second of all, the generation

of random numbers typically takes times and using random bits increases the

amount of state that the rule must deal with. Therefore, deterministic local

rules are used here. Lattice-gas collisions can be catergorized with even or odd

chirality. The method employed here uses even chirality collisions on even time

steps and odd chirality collisions on odd time steps, thereby eliminating the

need for a random coin toss. The validity of such a partitioning of the collisions

must be justified. This may be done in a straight forward way using the results

of §4.2. The simplest hydrodynamic example is a definite chirality hexagonal

lattice-gas, almost identical to the usual FHP gas except no random coin toss is

made. For a hexagonal lattice, B = 6, the eigenvectors of the Jacobian matrix,

(11), are simply composed of 1 plus the three roots of -1

ξ0 = (1, 1, 1, 1, 1, 1) (13)

ξ1 = (ε, ε∗,−1, ε, ε∗, 1) (14)

ξ2 = (ε∗, ε, 1, ε∗, ε, 1) (15)

ξ3 = (−1, 1,−1, 1,−1, 1) (16)

ξ4 = (ε, ε∗, 1, ε, ε∗, 1) (17)

ξ5 = (ε∗, ε,−1, ε∗, ε, 1), (18)

where ε = ei π
3 . The collision operator that produces 2-body and 3-body sym-

metric collision is the following

Ωa = Qa(1, 4) − Qa(0, 3) + Qa(1, 3, 5) − Qa(0, 2, 4), (19)

which is written in expanded form as

Ω0 = − (f0 (1 − f1) (1 − f2) f3 (1 − f4) (1 − f5)) +

(1 − f0) f1 (1 − f2) (1 − f3) f4 (1 − f5) −
f0 (1 − f1) f2 (1 − f3) f4 (1 − f5) +

(1 − f0) f1 (1 − f2) f3 (1 − f4) f5
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Using (9) the Jacobian may be calculated3

J = circ[(1 − f)2 f,−(1 − f)2 f, (−1 + f)2 f2,

(1 − 2 f) (1 − f)2 f, (1 − f)2 f (−1 + 2 f) ,

−(1 − f)2 f2]

Using (12), the eigenvalues of J may be directly calculated

λ0 = 0

λ1 = 0

λ2 = 2 ε (1 + ε) (−1 + f)3 f

λ3 = −6 (1 − f)2 f2

λ4 = 2 ε (1 + ε) (1 − f)3 f

λ5 = 0

There are only three zero eigenvalues, so the deterministic FHP-type lattice-gas

model possesses only three invariants: the total mass and the two components

of momentum. The methodology of successively switching between left and

right-handed collision tables is therefore justified, at least in the Boltzmann

limit. Switching between left and right-handed collision tables is done on the

CAM-8 since there is no additional time or memory cost (per module) incurred

in using multiple tables. However, since storing multiple lookup tables costs

additional memory on the CM-5, in practice we use only a single collision table,

and therefore, our CM-5 simulations use a chiral lattice-gas. In fact, the Von

Karman street simulation in §7 presented in figure 9 is an example of a chiral

lattice-gas.

4.4 Single Particle Multispeed Fermi-Dirac Distribution
Function

It is essential to verify that in the macroscopic limit, the cellular automaton

equation of motion (2) leads to Navier-Stokes hydrodynamics. To verify this,

we begin with the most general form of the single particle distribution func-

tion, appropriate for even multispeed lattice-gases: the Fermi-Dirac distribution.
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Fundamentally, this arises because the individual digital bits used to represent

particles satisfy a Pauli-exclusion principle. Therefore, the distribution must be

written as a function of the sum of scalar collison invariants, α + βeσ
aivi + γεσ,

implying the following form

fσ
a =

1
1 + eα+βeσ

aivi+γεσ
(20)

Using the identities in the appendix, an expansion to fourth order of (20) about

zero velocity is the following

fσ
a = dσ

−dσ(1 − dσ)β1e
σ
ai

vi

c

−1
2
dσ(1 − dσ)(α2 + γ2εσ)

v2

c2

+
1
2
dσ(1 − dσ)(1 − 2dσ)β2

1eσ
aie

σ
aj

vivj

c2

−1
2
dσ(1 − dσ)β3e

σ
ai

viv
2

c3

+
1
2
dσ(1 − dσ)(1 − 2dσ)β1(α2 + γ2εσ)eσ

ai

viv
2

c3

−1
6
dσ(1 − dσ)(1 − 6dσ + 6d2

σ)β3
1eσ

aie
σ
aje

σ
ak

vivjvk

c3

+O(v4)

where dσ = fσ
a |v=0. The coarse-grain averaged dynamics depend on the follow-

ing dynamical variables.

Particle number density:

m
∑
a,σ

fσ
a = ρ, (21)

Momentum density:

mc
∑
a,σ

eσ
aif

σ
a = ρvi, (22)

Moment density flux tensor:

mc2
∑
a,σ

eσ
aie

σ
ajf

σ
a = Πij . (23)

Total energy density, half the trace of the momentum flux tensor:

nε =
1
2
Π̂ii. (24)
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Pressure tensor, P̂ :

P̂ij = m
∑
a,σ

fσ
a (ceσ

ai − vi)
(
ceσ

aj − vj

)
. (25)

Heat flux, q:

qi = m
∑
a,σ

fσ
a (ceσ

ai − vi)
2 (

ceσ
aj − vj

)
. (26)

In equilibrium, the cellular automaton dynamical equation (4) reduces to

∂tf
σ
a + ceσ

ai∂if
σ
a = 0. (27)

(27) implies 3 conservation equations. To obtain these equations, the identities

for isotropic lattice vectors given in the appendix are necessary. Using (21) and

(22) in (27) gives continuity (mass conservation):

∂tρ + ∂i(ρvi) = 0. (28)

Using (22) and (23) in (27) gives the Navier-Stokes equation (momentum con-

servation):

∂t(ρvi) + ∂j(ρgvivj) = −∂ip + η∂2vi. (29)

Using (25) and (26) in (27) gives the heat equation (energy conservation):

∂t(nε) + ∂i(nεvi) +
1
2
∂iqi + ∂j(viPij) = 0, (30)

where

p = (γ − 1)(nε − 1
2
ρgv2) (31)

and γ = Cp

Cv
or γ − 1 = 2

D . Although the lattice-gas may in principle be

comprised of an indefinite number of speeds, from (31) we see that the pressure

depends upon the square of the bulk velocity, i.e. it is the difference of the total

internal energy of the lattice-gas minus the bulk kinetic energy. In a single speed

lattice-gas, this kind of velocity dependence is anomalous and is a well known

deficiency of the lattice-gas. However, for a multispeed lattice-gas the existence

of this term takes on a physical interpretation. For a classical ideal gas, the

pressure is proportional to both the sound speed squared and the temperature

p = ρc2
s = nkBT. (32)
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Since ρ = mn, equating (31) with the ideal gas law (32) gives the total internal

energy in terms of the bulk kinetic energy 1
2mv2 and the local particle thermal

energy kBT

ε =
g

2
mv2 +

kBT

γ − 1
. (33)

The Navier-Stokes equation (29), the pressure (31), and the total energy (33) all

explicitly have a factor g in them. In the Boltzmann limit, the factor g depends

on the particle speeds, cσ, and on the density distribution per speed, dσ, by the

following complicated expression

g =
∑

σ dσ

∑
σ Bσ( cσ

c )4dσ(1 − dσ)(1 − 2dσ)[∑
σ Bσ( cσ

c )2dσ(1 − dσ)
]2 . (34)

If g = 1, then a multispeed lattice-gas automata would exactly solve the ideal

fluid equations where the physical interpretation of the total internal energy

would then be that it partitions into a bulk motion term, or kinetic energy,

and a fluctuating motion term, or random heat energy associated with a cer-

tain gas temperature. Therefore, the multispeed lattice-gas calculation, in the

Boltzmann limit, would exactly agrees with classical kinetic gas theory, see the

expression for the partial pressure of an electron gas given by Li and Wu [51].

The factor g approachs one only as the number of speed in the lattice-gas model

becomes large. However, for a small number of speeds, a rescaling of the vari-

ables recovers the exact dynamics. A similar observation has been made by

Teixeira [52] in his investigation of multispeed lattice-gas automata models.

4.5 Hexagonal Lattice

In a hexagonal lattice there are six lattice vectors which we enumerate by the

following convention

êa = −
(
sin

πa

3
, cos

πa

3

)
, (35)

where a = 1, 2, . . . , 6. The spatial coordinates of the lattice sites may be ex-

pressed as follows

xij =

(√
3

2
j, i − 1

2
(j mod 2)

)
(36)
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where i and j are rectilinear indices which specify the data memory array loca-

tion used to store the lattice-gas site data. For a multispeed lattice-gas it is nec-

essary to shift data more than one lattice length. Let s = (j mod 2)(r mod 2).

Given a particle at site (i, j), it may be shifted to a site r lattice units away to

a remote site (i′, j′) by the following mapping

(i′, j′)1 =
(

i +
r + 1

2
− s, j − r

)
(37)

(i′, j′)2 =
(
i − r

2
− s, j − r

)
(38)

(i′, j′)3 = (i − r, j) (39)

(i′, j′)4 =
(

i +
r + 1

2
− s, j + r

)
(40)

(i′, j′)5 =
(
i − r

2
− s, j + r

)
(41)

(i′, j′)6 = (i + r, j) (42)

where (i′, j′)a denotes the shifted site, i.e. (i, j) → (i′, j′) with a shift along

vector ~r = rêa and where division by 2 is considered integer division.

These streaming relations are useful for implementing a lattice gas in a

structured language such as the C-language. Our implementation on the CM-5

in the C-language and DPEAC use these relations for all address computations.

In these streaming relations, the modulus operator is base 2 because a two-

dimensional hexagonal lattice embedded into a square three-dimensional mesh

is pleated.

The simplest way to see this embedding is to define z = (j mod 2). Therefore

the third dimension along the z-axis is narrow, only one lattice distance wide.

Half of the lattice sites are at z = 0 and the other half are at z = 1. This divides

the hexagonal lattice into two sublattices that we refer to as pleat 0 and pleat 1.

Table 1 lists the components of the data translation vectors, or kicks, for each

stream direction, a = 1, 2, . . . , 6, for both pleats. This kick table was used for

the CAMForth implementation on the CAM-8 and the C* implementation on

the CM-5. This is equivalent our general streaming relations for the case when

r = 1. The usefulness of this kind of embedding is that if the data for each

one of the sublattices is rendered for display, it can be drawn in simple raster
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form and fluid structures will appear correctly, i.e. a sound pulse will appear

circular.

5 The Cellular Automata Machine CAM-8

The cellular automata machine CAM-8 architecture devised by Norman Mar-

golus of the MIT Laboratory for Computer Science [37, 22] is the latest in

a line of cellular automata machines developed by the Information Mechanics

Group at MIT [28, 4, 33]. It is optimized for performing lattice-gas simulations.

The CAM-8 architecture itself is a simple abstraction of lattice gas dynamics.

Lattice gas data streaming and collisions are directly implemented in the ar-

chitecture. The communication network is a cartesian three-dimensional mesh.

Crystallographic lattice geometries can be directly embedded into the CAM-8.

Each site of the lattice has a certain number of bits (a multiple of 16) which we

refer to as a “cell”. Each bit of the cell, or equivalently each bit plane of the

lattice, can be translated through the lattice in any arbitrary direction. The

translation vectors for the bit planes are termed “kicks”. The specification of

the x,y, and z components of the kicks for each bit plane (or hyperplane) exactly

defines the lattice. An interesting property of the architecture is that the kicks

can be changed during the simulation. Therefore, the data movement in the

CAM-8 can be quite general. Once the kicks are specified, the coding of the

lattice-gas streaming is completed. In effect, the kicks determine all the global

permutations of the data.

Local permutations of data occur within the cells. These permutations are

the computational metaphor for physical collisions between particles4. All local

permutations are implemented in look-up tables. That is, all possible physical

events with a certain input configuration and a certain output configuration

are precomputed and stored in SRAM, for fast table look-up. The width of the

CAM-8 look-up tables are limited to 16-bits, or 64K entries. This is a reasonable

width satisfying the opposing considerations of model complexity versus memory

size limitations for the SRAM. Site permutations of data wider than 16-bits
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must be implemented in several successive table look-up passes. Since the look-

up tables are double buffered, a scan of the space can be performed while a new

look-up table is loaded for the next scan.

Figure 4 is a schematic diagram of a CAM-8 system. On the left is a single

hardware module—the elementary “chunk” of the architecture. On the right

is an indefinitely extendable array of modules (drawn for convenience as two-

dimensional, the array in normally three-dimensional). A uniform spatial calcu-

lation is divided up evenly among these modules, with each module simulating

a volume of up to millions of fine-grained spatial sites in a sequential fashion.

In the diagram, the solid lines between modules indicate a local mesh intercon-

nection. These wires are used for spatial data movements. There is also a tree

network (not shown) connecting all modules to the front-end host, a SPARC

workstation with a custom SBus interface card, that controls the CAM-8. It

downloads a bit-mapped pattern as the initial condition for the simulations. It

also sends a “step-list” to the CAM-8 to specify the sequence of kicks and scans

that evolve the lattice-gas in time. One can view the lattice-gas simulation in

real-time since a custom video module captures site data for display on a VGA

monitor, a useful feature for lattice-gas algorithm development, test and eval-

uation. The CAM-8 has built-in 25-bit event counters so that measurements

can be done in real-time without slowing the lattice-gas evolution. We have

used this feature to do real-time coarse-grain block averaging of the lattice-gas

number variables and to compute the components of the momentum vectors for

each block. The amount of coarse-grained data is sufficiently small that it can

be transferred back to the front-end host for graphical display as an evolving

flow field within an X-window. See figures 7, 8 and 9 for example flow fields.

6 The Connection Machine CM-5

The Thinking Machines Corporations’s CM-5 is a massively parallel computer

that contains up to 16384 processing nodes[53]5. Figure 5 shows a processing

node consisting of a SPARC CPU, 32 Mbytes of memory and 4 Vector processing
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units. These processing nodes are all connected via a “fat-tree” communications

net that allows fast inter-node communication. These processing nodes are

controlled by a front-end host computer which is a modified SUN workstation.

The SPARC processor on each node issues instructions to the vector units and

performs most bookkeeping tasks while the vector units perform arithmetic and

logical operations on the data. Each vector unit has a peak rate of 32 million

64-bit ops (floating point or integer) for a combined total of 128 Mops/node.

Each node’s memory is divided into 8 Mbyte banks, one for each vector unit.

Each vector unit has it’s own independent 128 Mbyte/sec path to memory for

a combined memory bandwidth of 512 Mbyte/sec for each node. The CM-5

at the Army High Performance Computing Research Center in Minneapolis,

Minnesota contains 544 nodes for a total of 16 Gb of memory and 64 Gops of

peak processing speed.

We have also implemented a lattice gas simulator on the CM-5 in a multiple

instruction multiple data (MIMD) style. The CMMD message passing library

is used for inter-node communication and host-node interaction. In order to get

the highest possible performance we explicitly manipulate the vector units on

each node using their assembler language known as DPEAC. To ease the burden

of hand coding the vector units a macro package known as GCC/DPEAC is used.

This package uses features available in the GNU C compiler to issue assembler

language instructions from ANSI C and simplifies matters considerably.

We partition the problem space into equally sized rectangular units. Each

processing node is responsible for updating one of these rectangular units. This

partitioning allows one to send a small number of long messages to connect

the space together. Inter-node communication is only necessary along one of

the axes of the problem space. Since the inter-node communications network is

optimized for long message lengths we expect that this partitioning will make

the effective use of available communications bandwidth. Within a processing

node, each of the 4 vector units is responsible for updating it’s quarter of the

space. Communication between each vector unit’s 8 Mbyte bank of memory is

mediated by the SPARC processor.
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There are two distinct phases of a lattice gas update cycle. The first phase

is the collision phase where particles can interact. The second phase involves

streaming of the bits to their new locations, consistent with their velocity and

the lattice on which the simulation is being performed. In most lattice gas

models all collisions can happen concurrently and all sites can stream their data

concurrently as well. The collision phase can be handled via look up tables

(LUT’s) for 16 bit sites. The LUT is attractive in that it can be an extremely

simple and fast update mechanism.

We have distributed the LUTs throughout the machine, indeed each vector

unit has it’s own copy of the LUT. Figure 6 shows the memory layout on each

node. During the collision phase each vector unit fetches all the sites in it’s

partition of the problem space and runs them through it’s copy of the LUT.

Since each vector unit has it’s own independent 128 Mbyte/sec data path to

a bank of memory, this operation can be performed extremely rapidly. With

this high degree of parallelism the LUT operation consumes a small fraction

of the time necesary to update the space. As the number of bits of site data

grows beyond 16 [64K entries] the LUT’s begin to consume too much memory.

For models that involve larger quantities of site data (i.e. # bits > 20) other

methods involving LUT compression/decompression need to be used for the

collision phase.[54]

The streaming phase is more complex. The approach taken here is to hold

the address of each bit’s destination in a pre-computed table. These tables

may be computed in ordinary C, which is advantageous for changing from one

model to another. Additionally, potentially complex addressing calculations are

performed only once, during initialization. Before a site can be updated, a com-

munication phase must take place so that each site can access all it’s neighbors.

Communication must take place across node and vector unit boundaries. The

communication is done so that every site has access to all it’s neighbor values

on one vector unit’s 8 Mbyte bank of memory. To update a particular site each

vector unit first loads all the neighbors of the site to be updated from the ap-

propriate areas. Then the relevant bits from each neighbor site are extracted
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sequentially to build up the new site value. The new site value is then written

to memory.

After implementing a lattice-gas simulator with the above considerations in

mind we find that we can achieve update rates on the order of 550 Msites/sec

on a 256 node partition of the CM-5 for the FHP gas model. This timing was

done using a 32K × 2K lattice. We find that the longer the system is across

each node the greater the performance realized. This is due to the fact that

long system sizes across each node increase the fraction of sites in the interior of

each vector unit that do not need to communicate with sites on adjacent vector

units or processing nodes.

7 Gallery of Computational Results

7.1 Rayleigh-Bénard Convection on the CAM-8

A well known fluid instability of a thermohydrodynamic system is Rayleigh-

Bénard convection[55, 56]. Rayleigh-Bénard convection is popular because one

can observe the onset of order and then the transition to chaos in the flow

patterns [57, 58].

Our implementation of the two-speed hexgonal lattice-gas with a rest par-

ticle, includes gravitational forcing, free-slip and no-slip boundaries which may

be oriented horizontally, vertically, or inclined ±60◦, and heating and cooling

sites in order to model temperature controlled boundary surfaces. This has been

encoded within the site data space of 16-bits per site for simple implentation on

the CAM-8. The ability of encoding such complex dynamics within 16-bits is

one of the remarkable aspects of the lattice-gas formalism in terms of efficient

memory use affording us the ability to do flash updating from prestored colli-

sion tables. 98% of the 216 entries in the collision tables are used (i.e., not the

identity) in this model. Similar lattice gas models have been implemented by

Burges and Zaleski [59] and by Chen et al. [9] and Ernst and Das[60].

To optimize the collision frequency between the fast and slow particles we

have chosen their momenta to be of unit value. That is, the slow particles have
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unit mass, m1 = 1 and the fast particles have half the mass, m2 = 1/2. In this

way, p1 = p2 = 1 and their energies are E1 = 1 and E2 = 2. With this con-

vention we have the usual FHP-type collisions [32] between the different speed

particles while conserving mass, momentum, and energy. These include head-on

2-body collisions, three-body collisions, collisions with spectators, etc. Grosfils,

Boon and Lallemand have introduced a three-speed thermohydrodynamic gas

with speeds 1,
√

3, 2 and a rest particle [61]. With this 19-bit model, efficient

collisional mixing can occur with all particle having the same unit mass. Since

the particles may now carry different units of energy, in addition to the equation

of continuity and Euler’s equation, in this system we have an energy transport

equation.

7.2 Kelvin-Helmholtz Instability on the CAM-8

Another well known fluid instability is the Kelvin-Helmholtz shear instability.

Figure 8 shows the a simulation of a shear instability on a hexagonal lattice

4096 × 2048 in size with toroidal boundary conditions. A momentum map is

overlayed on a vorticity map. Clockwise vorticity is shaded red and counter-

clockwise vorticity is shaded blue. The initial conditions for the simulation are

very uniform, see Figure 8a. A gas density is chosen, in this case approximately

1/7 filling, and two horizontal regions are set with uniform, but opposing flow

directions. That is, the majority of the fluid, the background region, is set with

a uniform flow velocity of approximately 0.4 cs (Mach 0.4) flowing to the right.

A narrow stripe 256 sites wide is set in the center of the space flowing to the left

at -0.4 cs. No sinusoidal perturbation is given to the counter-flow narrow stripe

region as in previous lattice-gas simulations[62]. No external forcing is applied

during the simulation run. The only perturbation is caused by minor fluctations

produced by the random number generator when producing a uniform fluid

density. After approximately 10,000 time steps, the narrow horizontal center

stripe forms a sinusoidal pattern. The sinsoid’s amplitude grows, form a wave

that eventually breaks into several counter-rotating vortices and the two flow

regions begin to substantially mix. Figure 8 shows the initial state of the fluid
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and then the resulting states at 10,000 and 30,000 time steps. By t = 30, 000 the

formation of a wave is apparent. Eventually after 400,000 time steps, the fluid

attains a uniform flow to the right after the system has equilibrated, exactly

conserving the momentum in the initial configuration.

7.3 Von Karman Streets on the CM-5

Figure 9 shows a simulation of vortex shedding from a flat plate after 32,000

time steps on a hexagonal lattice 4096 × 2048 in size. A momentum map is

overlayed on a vorticity map. Clockwise vorticity is shaded red and counter-

clockwise vorticity is shaded blue. A flat plate obstacle is placed in a channel of

fluid with a flow directed towards the right of the figure. The fluid flow is forced

by completely reconstructing the fluid’s velocity distribution at each time step

in a “forcing strip” at the left of the channel. This forcing method prevents

sound waves and other disturbances from propagating around the torus in the

flow direction and overwhelming the flow behavior. The boundary conditions

are effectively cylindrical.

The flow is started from a random distribution of particles at the appropriate

density with a net velocity close to that of the steady state flow. Since this is not

a true equilibrium starting condition, some transient behavior appears in the

form a sound pulse that propagates down the channel. This pulse is absorbed

by the forcing strip. After 2000 time steps the system is equilibrated with no

transient phenomena visible. This equilibration time is very short compared

with the time necessary for vortex development. The cylindrical boundary con-

dition appears to work extremely well, allowing one to run the simulation to

long times.

8 Discussion

We have presented a theoretical description of lattice-gas automata in a dis-

crete D-dimensional space. Attention was focused on two-dimensional fluids

for numerical simulation. We have implemented some lattice-gas fluids on a
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new prototype cellular automata machine, the CAM-8. Identical models on the

CM-5 were also implemented. To illustrate lattice-gas dynamics in the macro-

scopic limit, several fluid instabilities were tested: (1) the Rayleigh-Bénard con-

vective instability just after the critical Rayleigh number has been reached in

the system by suitable gravitational forcing and temperature gradient; (2) the

Kelvin-Helmhotz shear instability; and (3) the Von Karman vortex shedding

instability.

The strength of the CAM-8 in these simulations is that it is optimized for

fine-grained spatial calculations. It can handle many lookup-tables because of its

double buffering. It can perform data streaming by spatial data shifts without

slowing down the simulation. For a multispeed system or a lattice-gas with long-

range interactions, large shifts are necessary. The interaction neighborhood on

the CAM-8 need not be local: data can be shifted to the nearest neighbor or a

distance thousands of sites away with the same computational effort.

The strengths of the CM-5 in these simulations are its software, size, and

flexibility. CM-5 applications can be coded largely in standard programming

languages such as C and FORTRAN-90. CM-5 machines offer the possibility

of simulating enormous problem spaces due to their much larger memories. In

our implementation, streaming is done in the CM-5 by address maps preloaded

into memory. Although this uses a lot of memory, the flexiblity of precomputed

addressing tables simplifies the implementation of complex lattice geometries.

The main theoretical and computational points of this paper are:

1. Deterministic microscopic lattice-gas dynamics produce the correct Navier-

Stokes hydrodynamics in the macroscopic limit where no randomness is used in

the local rules. Treating individual digital bits as multispeed fermionic particles

allows one to simulate fluid systems where mass, momentum, and energy are

exactly conserved and where the dynamics has a time-reversal invariance.

2. A workstation-scale CAM-8 prototype is an efficient, cost-effective plat-

form for lattice gas problems that rivals the capabilities of extant parallel su-

percomputers.

3. The lattice gas simulation method may be directly ported to a variety
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of parallel computer architectures: the facilities provided by most parallel su-

percomputers are suitable for efficiently running lattice gas applications. Com-

munication costs for running lattice-gas automata simulations decrease as the

problem being run increases in size and can essentially be neglected for large

systems.

In closing, it is interesting that the massively parallel Connection Machine

2, to date has achieved some of the best update rates for lattice-gases, for exam-

ple, 700-750 million sites per second update rate for the FHP lattice-gas[63, 23].

Building a multiple instruction multiple data Connection Machine 5, although

more focused on general messaging, has improved upon its predecessor’s per-

formance (for the FHP lattice-gas, currently the CM-5 could exceed 2 billion

updates per second on a 1024-node partition). Although machines like the CM-

5 can solve a wider class of computational problems, we believe that effort spent

on exploring locally interacting automata models on fine-grained architectures

will lead to new practical methods for accurately modeling physics.
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Identities for Isotropic Lattice Tensors:
∏2n

k=1 êσ
k

Our momentum states are êσ
a , where a = 1, 2, . . . , Bσ, and where σ denotes

the particle speeds. The momentum state-space per particle speed has cardinal-

ity Bσ. Lattice summations over odd powers of ê must vanish by symmetry. The

following identities, listed up to the fourth moment, hold for arbitrary values of

Bσ and spatial dimension D [64]

∑
a

eσ
ai = 0 (43)

∑
a

eσ
aie

σ
aj =

Bσ

D
δij (44)

∑
a

eσ
aie

σ
aje

σ
ak = 0 (45)

∑
a

eσ
aie

σ
aje

σ
akeσ

al =
Bσ

D(D + 2)
(δijδkl + δikδjl + δilδjk). (46)

C* Implementation

A parallel version of the C-language developed by Thinking Machines Cor-

poration is the C* language[65]. This is a well developed language in spirit very

close to its predecessor – it is as concise as the C-language itself. It offers many

useful constructs making the coding of algorithms for parallel data very effi-

cient. As typical of most parallel languages, an array operation is handled in a

single instruction — for the most part programming loops do not appear in the

code. Most parallel computation is achieved by data movement. The geometry

of the problem is specified at the onset by defining your the data structure’s

shape. This is usually a D-dimensional array with a certain size in each dimen-

sion. The shape definition defines all the needed communication topology for

the compiler. It is possible to declare boolean shapes in C*. We have used this

feature to encode each bit plane of the lattice-gas. This is a convenient feature

of the language making efficient use of memory. Normally, in a lattice-gas code,

one must extract and insert individual bits at the lattice sites. The option of

working directly with boolean arrays has therefore simplified the coding effort

substantially. If individual elements of a parallel array must be accessed, C*
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uses the syntax of parallel left indexing. Right indexing of arrays is reserved

for its usual C-language meaning. We use right indexed arrays to represent the

individual bit planes of the lattice gas.

We have implemented a two-dimensional hexagonal lattice embedded into a

three-dimensional mesh. This implementation is equivalent to our implemention

in CAMForth on the CAM-8 and GCC/DPEAC on the CM-5. Streaming of

pleat 0 and pleat 1 are coded separately. We give a C* code fragment for this

embedding. Note that the comments to the right of the lines correspond exactly

to the kick components listed in Table 1. With a few C* lines of code one can

completely implement hexagonal lattice-gas streaming. We have used the C*

command to-torus-dim(destination pointer, source, axis, distance) to shift the

bit planes with toroidal boundary conditions. This is an efficient communication

routine for sending data in a regular fashion using grid communications. The

partitioning of the space between processors is handled completely by the C*

compiler. We will see how efficiently the compiler does this partitioning in the

discussion to follow.

We have tested our C* implementation for different situations. Given a

certain lattice size, for example 1024 × 2048, with have found the performance

of the CM-5 to vary linearly with the number of processing nodes. This linear

variation is expected so long as the lattice size is sufficiently large. To determine

a reasonable lattice size, we have performed repeated simulations with different

lattice sizes but with a fixed number of processors. The results obtained for a

fixed 256-node partition of the CM-5 is given in figure 10, in which we plotted

simulation site update rates for lattice sizes 64 × 128, 128 × 256, . . . , 8192 ×
16384. For small lattice sizes, the performance is very poor, on the order of a

million site updates per seconds. This is because the streaming is limited by

processor to processor communication bandwidth. As the lattice size increases,

the number of sites interior to the node grows and the number of sites on the

partition boundary deceases. Consequently, the site update rate continuously

improves with larger lattices. The update rate asymtotically approaches about

25 million site updates per second. This is equivalent to approximately 100,000
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sites updates per processing node. This is roughly the maximum update rate

achievable on a SPARCstation 1. A full 512-node partition has a peak rate of

about 50 million site updates per second, which is about one quarter the speed

of the CAM-8.
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[54] Michel Hénon. Implementation of the fchc lattice gas model on the con-

nection machine. Journal of Statistical Physics, 68(3/4):353–377, 1992.

[55] Christiane Normand and Yves Pomeau. Convective instability: A physi-

cist’s approach. Reviews of Modern Physics, 49(3):581–624, 1977.

[56] E.G.D. Cohen. The kinetic theory of fluids–an introduction. Physics Today,

pages 64–73, January 1984.

[57] Giorgio Careri. Order And Disorder In Matter. The Benjamin/Cummings

Publishing Company, 1984.

[58] Gregory L. Baker and Jerry P. Gollub. Chaotic Dynamics an introduction.

Cambridge University Press, 1990.
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Table 1: Streaming for 2D Hex Lattice Embedded a into 3D Mesh

Direction x y z
Pleat 0
1 0 0 1
2 0 -1 1
3 0 -1 0
4 1 -1 1
5 1 0 1
6 0 1 0
Pleat 1
1 -1 1 -1
2 -1 0 -1
3 0 -1 0
4 0 0 -1
5 0 1 -1
6 0 1 0

1We have written lattice-Boltzmann code in the parallel C-Star language on the Connection
Machine-5.

2Lattice Boltzmann simulation for three dimensional flows with Reynolds numbers of about
50,000 were presented in June 1993 at the International Conference on Pattern Formation and
Lattice-Gas Automata sponsored by the Fields Institute, Waterloo, Canada.

3Actually, the most straight foward way to calculate the matrix elements of J is to write a
Mathematica code.

4Locally, the CAM-8 is not limited to performing only permutations, it can do general
mappings. However, since we are interested in only particle conserving reversible dynamics,
permutations are sufficient.

5Currently the largest CM-5 resides at Los Alamos National Laboratory with 1024 Nodes.
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Figure 1: Illustration on a hexagonal lattice of the two-step collision and streaming process
required to complete a single time step: (a) initial configuration, (b) collision by permutation,
and (c) streaming of particles.
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Figure 2: (a) Lattice vector label convention; (b) Hexagonal lattice convention with lattice
directions a = 3 up and a = 6 down. Coordinates above the lattice nodes are (i, j) memory
array indices.
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Figure 3: MIT Laboratory for Computer Science cellular automata machine CAM-8. This 8
module prototype can evolve a D-dimensional cellular space with 32 million sites where each
site has 16 bits of data with a site update rate of 200 million per second.
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Figure 4: (a) A single processing node, with DRAM site data flowing through an SRAM
lookup table and back into DRAM. (b) Spatial array of CAM-8 nodes, with nearest-neighbor
(mesh) interconnect (1 wire/bit-slice in each direction).
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Figure 5: CM-5 Node: SPARCCPU, 32 Mbytes of memory and 4 Vector processing units.
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Figure 7: Thermo 13-bit CAM-8 Experiment: Rayleigh-Bénard convection cells at the
critical Rayleigh number. Lattice Size: 2048 × 1024. Time Average: 100. Spatial Average:
64 × 64. Mass Density Fraction=1/5. Data presented at 50,000 time steps.
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Figure 8: Momentum and vorticity map of two-dimensional shear instability on the CAM-
8. Lattice size of 4096 × 2048 with toroidal boundary conditions. Spacetime averaging over
128x128 blocks for 50 time steps. FHP collisions with spectators and a rest particle. Data
presented at time steps 0, 10000, and 30000 with Galilean velocity shift.
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Figure 9: FHP-II CM-5 Experiment: Von Karman Streets Lattice Size: 4096 × 2048. Time
Average: None. Spatial Average: 128x128. Mass Density Fraction=1/7. Data presented at
32,000 time steps.
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Figure 10: Performance runs on a 256-node CM-5 for an FHP hexagonal lattice embedded
into a 3D mesh. Performance significantly suffers by communication overhead for small lattice
sizes.
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